Novemcore Logo
ovemcore
Services
Software
Wir können Software!
Partner führender Software-Lösungen – wir machen digitale Transformation.
Software
Agicap
Moss
ValueWorks
Fallstudien
Insights
EventsWissen
Über uns
Über UnsKarriere
Kontaktieren
Blog & Insights
Jetzt kontaktieren

Daten, KI und KPIs: Wie Sie Ihre Datenstrategie messbar machen

31. Juli 2025
Artikel

Von Daten zu Entscheidungen: Machen Sie Ihre Datenstrategie steuerbar. Etablieren Sie eine Datenstrategie, die Wirkung sichtbar macht, Ressourcen fokussiert und datenbasierte Wertschöpfung konsequent messbar macht – für mehr Transparenz, Effizienz und unternehmerische Präzision.

Max Borisovskiy
Business & Corporate Finance Analyst
LinkedIn Icon
Von der Datenflut zur Steuerungskraft

Daten gelten als eine der zentralen Ressourcendes digitalen Zeitalters. Unternehmen investieren in moderne Plattformarchitekturen, entwickeln KI-gestützte Anwendungen und digitalisieren ihre Prozesse – doch die entscheidende Frage bleibt häufig unbeantwortet: Welchen konkreten wirtschaftlichen Mehrwert stiften diese Maßnahmen? Ohne strategisch definierte Zielgrößen, fundierte Leistungskennzahlen und ein belastbares Steuerungssystem bleiben Dateninitiativen weit hinter ihrem Potenzial zurück. Erst durch die gezielte Verbindung von Dateninfrastruktur, künstlicher Intelligenz (KI) und Key Performance Indicators (KPIs) entfaltet eine Datenstrategie ihre volle Wirksamkeit – als operatives Steuerungsinstrument und strategischer Erfolgsfaktor.

Warum Messbarkeit zum Erfolgsfaktor wird

Eine datenbasierte Unternehmenssteuerung erfordert mehr als nur die technische Verfügbarkeit von Informationen. Sie setzt voraus, dass Daten gezielt eingesetzt, deren Nutzung kontinuierlich überwacht und deren Wirkung auf das Geschäft quantifiziert wird. Studien zeigen, dass Organisationen mit KPI-gestützten Datenstrategien signifikant höhere Renditen auf Digitalinvestitionen erzielen. Darüber hinaus steigt der Erwartungsdruck seitens Geschäftsführung, Aufsichtsgremien, regulatorischer Instanzen und nicht zuletzt der Kunden, datenbasierte Entscheidungen transparent und nachvollziehbar zu treffen. KPIs übernehmen dabei eine doppelte Funktion: Sie machen die Wirkung datengetriebener Aktivitäten sichtbar und schaffen eine valide Grundlage für faktenbasierte Steuerung.

 

Die fünf Schritte zur messbaren Datenstrategie

1. Strategische Zielbilder formulieren

Im Zentrum jeder erfolgreichen Datenstrategie steht eine klare Zieldefinition. Unternehmen müssen festlegen, welche konkreten wirtschaftlichen, operativen oder innovationsbezogenen Effekte mit dem Einsatz von Daten erreicht werden sollen. Mögliche Zielsetzungen sind etwa die Reduzierung von Prozesskosten, die Steigerung der Kundenzufriedenheit, dieErschließung neuer Ertragsquellen oder eine verbesserte Prognosefähigkeit. Nurwenn diese Zielbilder präzise formuliert sind, lassen sich daraus messbare und steuerungsrelevante Kennzahlen ableiten.

2. Wirkungsorientierte KPIs entwickeln

Die Auswahl geeigneter KPIs ist der nächste logische Schritt. Leistungskennzahlen sollten nicht nur mit den strategischen Zielen übereinstimmen, sondern auch valide messbar, eindeutig interpretierbar und handlungsleitend sein. Neben etablierten betriebswirtschaftlichen Größen wie Customer Lifetime Value, Churn Rate oder Forecast Accuracy gewinnen zunehmend auch KI-spezifische Metriken an Bedeutung – etwa Modellgenauigkeit, Fairness-Indikatoren oder Time-to-Value. Entscheidend ist, dass die KPIs in das unternehmensspezifische Wertschöpfungssystem integriert und regelmäßig überprüft werden.

3. Datenqualität und Governance sicherstellen

Fundierte Wirkungsmessung ist nur auf Basis konsistenter und vertrauenswürdiger Daten möglich. Deshalb sind die Sicherstellung der Datenqualität sowie der Aufbau einer stringenten Daten-Governance unverzichtbar. Unternehmen benötigen klare Rollen- und Verantwortlichkeitsmodelle(z. B. Data Owner, Data Stewards), standardisierte Datenprozesse und zentralisierte Infrastrukturen wie Data Warehouses oder Data Lakes. Ergänzend tragen semantische Standards, Metadatenkataloge und automatisierte Schnittstellen wesentlich zur operativen Umsetzbarkeit einer KPI-basierten Steuerung bei.

4. Transparenz durch Reporting und Visualisierung schaffen

KPIs entfalten ihre Wirkung nur dann, wenn sie nicht nur berechnet, sondern auch zielgruppengerecht kommuniziert werden. Moderne Reporting- und Visualisierungstools wie Power BI, Tableau, Looker oder Microsoft Fabric ermöglichen die benutzerfreundliche Aufbereitung auch komplexer Datenmodelle. Interaktive Dashboards, rollenbasierte Zugriffe, Alert-Funktionen und Echtzeitdaten bilden die Grundlage für eine unternehmensweite Datenkultur. Durch eine systematische Verankerung im Führungsalltag wird aus einem KPI-System ein Steuerungsinstrument mit hoher praktischer Relevanz.

5. Iteratives KPI-Management etablieren

Eine Datenstrategie ist niemals statisch. Geschäftsmodelle, Kundenanforderungen und technologische Rahmenbedingungen entwickeln sich dynamisch – entsprechend muss auch das KPI-System kontinuierlich angepasst werden. Erfolgreiche Organisationen etablieren feste Review-Zyklen, definieren Verfahren zur KPI-Evaluierung und binden Fachbereiche in die Weiterentwicklung aktiv ein. Nur durch diese kontinuierliche Optimierung kann langfristig sichergestellt werden, dass das Steuerungssystem seine Aktualität, Relevanz und Wirksamkeit behält.

‍

‍

Was gute KPIs auszeichnet

Nicht jede Kennzahl eignet sich als Steuerungsgröße. Gute KPIs zeichnen sich durch eine Reihe definierter Merkmale aus: Sie sind strategisch relevant, methodisch sauber definiert, auf valide Datenquellen gestützt und für Entscheidungsträger verständlich aufbereitet. Darüber hinaus besitzen sie eine klare Handlungsorientierung – das heißt, sie liefern nicht nur Informationen, sondern stoßen Entscheidungen an. Erst wenn eine Kennzahl konsequent zur Steuerung genutzt wird, erfüllt sie ihren Zweck. Beispiele hierfür sind etwa der Anteil genutzter Datenquellen am Datenbestand, die Self-Service-Nutzungsquote in Analytics-Systemen oder der wirtschaftliche Beitrag automatisierter Empfehlungen aus KI-Modellen.

 

Fazit: Datenstrategie braucht Steuerungsfähigkeit

Eine wirkungsvolle Datenstrategie ist weit mehr als ein technologisches Modernisierungsprojekt – sie ist ein betriebswirtschaftliches Steuerungsmodell. Erst durch strategische Zielklarheit, strukturierte KPI-Systeme und kontinuierliches Performance-Monitoring entsteht aus Daten ein belastbares Führungsinstrument. KPIs machen nicht nur Wirkung sichtbar, sondern fördern zugleich datenbasiertes Denken, stärken die operative Handlungsfähigkeit und schaffen Vertrauen bei internen wie externen Stakeholdern. Unternehmen, die ihre Datenstrategie messbar gestalten, erhöhen nicht nur ihre Effizienz und Agilität – sie sichern auch ihre Position im datengetriebenen Wettbewerb von morgen.

Novemcore begleitet Organisationen bei der Entwicklung und Implementierung messbarer Datenstrategien – von der Zielbilddefinition über das KPI-Design bis hin zur technischen Umsetzung, Governance und Skalierung. Sprechen Sie uns an, wenn Sie aus Ihrer Datenstrategie ein messbares Erfolgssystem entwickeln möchten.

 

Häufige Fragen (FAQ)

Was ist eine messbare Datenstrategie?‍

Eine messbare Datenstrategie verbindet unternehmensspezifische Ziele mit fundierten KPIs, um datenbasierte Maßnahmen systematisch zu steuern und deren Wirkung quantifizierbar zu machen.

Welche KPIs eignen sich zur Steuerung einer Datenstrategie?‍

Zu den relevanten KPIs zählen unter anderem Customer Lifetime Value, Time-to-Insight, Forecast Accuracy, Churn Rate sowie KI-spezifische Kennzahlen wie Modellgenauigkeit oder Bias Scores.

Wie messe ich den wirtschaftlichen Beitrag von KI-Anwendungen?‍

Die Wirkung von KI lässt sich über KPIs wie Modellgüte, Time-to-Value, Umsatzbeiträge, Kostenersparnis und operativen Zielerreichungsgrad bewerten.

Welche Tools eignen sich zur KPI-Visualisierung?‍

Zur Visualisierung und zum Monitoring von KPIs eignen sich Business-Intelligence-Tools wie Power BI, Tableau, Looker, Qlik oder Microsoft Fabric. Sie ermöglichen rollenbasierte, interaktive und automatisierte KPI-Reports.

Wie oft sollten KPIs überprüft und angepasst werden?

‍Die Überprüfung sollte in regelmäßigen Zyklen – idealerweise monatlich oder quartalsweise – erfolgen. Neue Rahmenbedingungen, technologische Entwicklungen und strategische Zielverschiebungen erfordern ein flexibles KPI-Management.

Daten, KI und KPIs: Wie Sie Ihre Datenstrategie messbar machen

31. Juli 2025
Artikel
Von der Datenflut zur Steuerungskraft

Von Daten zu Entscheidungen: Machen Sie Ihre Datenstrategie steuerbar. Etablieren Sie eine Datenstrategie, die Wirkung sichtbar macht, Ressourcen fokussiert und datenbasierte Wertschöpfung konsequent messbar macht – für mehr Transparenz, Effizienz und unternehmerische Präzision.

Daten gelten als eine der zentralen Ressourcendes digitalen Zeitalters. Unternehmen investieren in moderne Plattformarchitekturen, entwickeln KI-gestützte Anwendungen und digitalisieren ihre Prozesse – doch die entscheidende Frage bleibt häufig unbeantwortet: Welchen konkreten wirtschaftlichen Mehrwert stiften diese Maßnahmen? Ohne strategisch definierte Zielgrößen, fundierte Leistungskennzahlen und ein belastbares Steuerungssystem bleiben Dateninitiativen weit hinter ihrem Potenzial zurück. Erst durch die gezielte Verbindung von Dateninfrastruktur, künstlicher Intelligenz (KI) und Key Performance Indicators (KPIs) entfaltet eine Datenstrategie ihre volle Wirksamkeit – als operatives Steuerungsinstrument und strategischer Erfolgsfaktor.

Warum Messbarkeit zum Erfolgsfaktor wird

Eine datenbasierte Unternehmenssteuerung erfordert mehr als nur die technische Verfügbarkeit von Informationen. Sie setzt voraus, dass Daten gezielt eingesetzt, deren Nutzung kontinuierlich überwacht und deren Wirkung auf das Geschäft quantifiziert wird. Studien zeigen, dass Organisationen mit KPI-gestützten Datenstrategien signifikant höhere Renditen auf Digitalinvestitionen erzielen. Darüber hinaus steigt der Erwartungsdruck seitens Geschäftsführung, Aufsichtsgremien, regulatorischer Instanzen und nicht zuletzt der Kunden, datenbasierte Entscheidungen transparent und nachvollziehbar zu treffen. KPIs übernehmen dabei eine doppelte Funktion: Sie machen die Wirkung datengetriebener Aktivitäten sichtbar und schaffen eine valide Grundlage für faktenbasierte Steuerung.

 

Die fünf Schritte zur messbaren Datenstrategie

1. Strategische Zielbilder formulieren

Im Zentrum jeder erfolgreichen Datenstrategie steht eine klare Zieldefinition. Unternehmen müssen festlegen, welche konkreten wirtschaftlichen, operativen oder innovationsbezogenen Effekte mit dem Einsatz von Daten erreicht werden sollen. Mögliche Zielsetzungen sind etwa die Reduzierung von Prozesskosten, die Steigerung der Kundenzufriedenheit, dieErschließung neuer Ertragsquellen oder eine verbesserte Prognosefähigkeit. Nurwenn diese Zielbilder präzise formuliert sind, lassen sich daraus messbare und steuerungsrelevante Kennzahlen ableiten.

2. Wirkungsorientierte KPIs entwickeln

Die Auswahl geeigneter KPIs ist der nächste logische Schritt. Leistungskennzahlen sollten nicht nur mit den strategischen Zielen übereinstimmen, sondern auch valide messbar, eindeutig interpretierbar und handlungsleitend sein. Neben etablierten betriebswirtschaftlichen Größen wie Customer Lifetime Value, Churn Rate oder Forecast Accuracy gewinnen zunehmend auch KI-spezifische Metriken an Bedeutung – etwa Modellgenauigkeit, Fairness-Indikatoren oder Time-to-Value. Entscheidend ist, dass die KPIs in das unternehmensspezifische Wertschöpfungssystem integriert und regelmäßig überprüft werden.

3. Datenqualität und Governance sicherstellen

Fundierte Wirkungsmessung ist nur auf Basis konsistenter und vertrauenswürdiger Daten möglich. Deshalb sind die Sicherstellung der Datenqualität sowie der Aufbau einer stringenten Daten-Governance unverzichtbar. Unternehmen benötigen klare Rollen- und Verantwortlichkeitsmodelle(z. B. Data Owner, Data Stewards), standardisierte Datenprozesse und zentralisierte Infrastrukturen wie Data Warehouses oder Data Lakes. Ergänzend tragen semantische Standards, Metadatenkataloge und automatisierte Schnittstellen wesentlich zur operativen Umsetzbarkeit einer KPI-basierten Steuerung bei.

4. Transparenz durch Reporting und Visualisierung schaffen

KPIs entfalten ihre Wirkung nur dann, wenn sie nicht nur berechnet, sondern auch zielgruppengerecht kommuniziert werden. Moderne Reporting- und Visualisierungstools wie Power BI, Tableau, Looker oder Microsoft Fabric ermöglichen die benutzerfreundliche Aufbereitung auch komplexer Datenmodelle. Interaktive Dashboards, rollenbasierte Zugriffe, Alert-Funktionen und Echtzeitdaten bilden die Grundlage für eine unternehmensweite Datenkultur. Durch eine systematische Verankerung im Führungsalltag wird aus einem KPI-System ein Steuerungsinstrument mit hoher praktischer Relevanz.

5. Iteratives KPI-Management etablieren

Eine Datenstrategie ist niemals statisch. Geschäftsmodelle, Kundenanforderungen und technologische Rahmenbedingungen entwickeln sich dynamisch – entsprechend muss auch das KPI-System kontinuierlich angepasst werden. Erfolgreiche Organisationen etablieren feste Review-Zyklen, definieren Verfahren zur KPI-Evaluierung und binden Fachbereiche in die Weiterentwicklung aktiv ein. Nur durch diese kontinuierliche Optimierung kann langfristig sichergestellt werden, dass das Steuerungssystem seine Aktualität, Relevanz und Wirksamkeit behält.

‍

‍

Was gute KPIs auszeichnet

Nicht jede Kennzahl eignet sich als Steuerungsgröße. Gute KPIs zeichnen sich durch eine Reihe definierter Merkmale aus: Sie sind strategisch relevant, methodisch sauber definiert, auf valide Datenquellen gestützt und für Entscheidungsträger verständlich aufbereitet. Darüber hinaus besitzen sie eine klare Handlungsorientierung – das heißt, sie liefern nicht nur Informationen, sondern stoßen Entscheidungen an. Erst wenn eine Kennzahl konsequent zur Steuerung genutzt wird, erfüllt sie ihren Zweck. Beispiele hierfür sind etwa der Anteil genutzter Datenquellen am Datenbestand, die Self-Service-Nutzungsquote in Analytics-Systemen oder der wirtschaftliche Beitrag automatisierter Empfehlungen aus KI-Modellen.

 

Fazit: Datenstrategie braucht Steuerungsfähigkeit

Eine wirkungsvolle Datenstrategie ist weit mehr als ein technologisches Modernisierungsprojekt – sie ist ein betriebswirtschaftliches Steuerungsmodell. Erst durch strategische Zielklarheit, strukturierte KPI-Systeme und kontinuierliches Performance-Monitoring entsteht aus Daten ein belastbares Führungsinstrument. KPIs machen nicht nur Wirkung sichtbar, sondern fördern zugleich datenbasiertes Denken, stärken die operative Handlungsfähigkeit und schaffen Vertrauen bei internen wie externen Stakeholdern. Unternehmen, die ihre Datenstrategie messbar gestalten, erhöhen nicht nur ihre Effizienz und Agilität – sie sichern auch ihre Position im datengetriebenen Wettbewerb von morgen.

Novemcore begleitet Organisationen bei der Entwicklung und Implementierung messbarer Datenstrategien – von der Zielbilddefinition über das KPI-Design bis hin zur technischen Umsetzung, Governance und Skalierung. Sprechen Sie uns an, wenn Sie aus Ihrer Datenstrategie ein messbares Erfolgssystem entwickeln möchten.

 

Häufige Fragen (FAQ)

Was ist eine messbare Datenstrategie?‍

Eine messbare Datenstrategie verbindet unternehmensspezifische Ziele mit fundierten KPIs, um datenbasierte Maßnahmen systematisch zu steuern und deren Wirkung quantifizierbar zu machen.

Welche KPIs eignen sich zur Steuerung einer Datenstrategie?‍

Zu den relevanten KPIs zählen unter anderem Customer Lifetime Value, Time-to-Insight, Forecast Accuracy, Churn Rate sowie KI-spezifische Kennzahlen wie Modellgenauigkeit oder Bias Scores.

Wie messe ich den wirtschaftlichen Beitrag von KI-Anwendungen?‍

Die Wirkung von KI lässt sich über KPIs wie Modellgüte, Time-to-Value, Umsatzbeiträge, Kostenersparnis und operativen Zielerreichungsgrad bewerten.

Welche Tools eignen sich zur KPI-Visualisierung?‍

Zur Visualisierung und zum Monitoring von KPIs eignen sich Business-Intelligence-Tools wie Power BI, Tableau, Looker, Qlik oder Microsoft Fabric. Sie ermöglichen rollenbasierte, interaktive und automatisierte KPI-Reports.

Wie oft sollten KPIs überprüft und angepasst werden?

‍Die Überprüfung sollte in regelmäßigen Zyklen – idealerweise monatlich oder quartalsweise – erfolgen. Neue Rahmenbedingungen, technologische Entwicklungen und strategische Zielverschiebungen erfordern ein flexibles KPI-Management.

Max Borisovskiy
Business & Corporate Finance Analyst
LinkedIn Icon
Jetzt herunterladen

Bereit für die Zukunft?

Vereinbaren Sie jetzt ein unverbindliches Beratungsgespräch.

Jetz Kontaktieren
white arrow up iconwhite arrow up icon

Unsere Expertise

Data Analytics

Nutzen Sie das volle Potenzial Ihrer Daten? Gemeinsam analysieren wir Ihre Daten und liefern wertvolle Insights.

Mehr erfahren
Arrow
Datengestützte Prozess-Optimierung

Wie steigern Sie die Effizienz Ihrer Abläufe? Wir analysieren Ihre Prozesse datenbasiert und identifizieren Optimierungspotenziale für reibungslose Abläufe und gesteigerte Produktivität.

Mehr erfahren
Arrow
Data Valuation & Monetization

Welchen Wert haben Ihre Daten? Wir führen eine umfassende Bewertung Ihrer Daten durch und unterstützen auch bei der Monetarisierung, um neue Umsatzpotenziale zu erschließen.

Mehr erfahren
Arrow
Alle Services
Arrow

Relevante Fallstudien

Optimierung der Conversion Rate durch datengetriebene OKRs: Wie Novemcore ein Health & Wellbeing-Unternehmen erfolgreich unterstützte
Datengetriebenes Management im Maschinenbau: Wie Novemcore KPI- und OKR-Frameworks mit Power BI optimierte
Effiziente KPI-Überwachung in der Finanzbranche: Wie eine Bank mit Power BI und Novemcore ihre Beraterleistung optimierte
Optimierte Finanzsteuerung und datenbasierte Entscheidungen mit ValueWorks: Wie Vroozi seine Business Intelligence stärkte
Optimierte Budgetplanung und Expansionsstrategie: Wachstumsmärkte effizient erschließen
Alle Case Studies
Arrow

Relevante Insights

Artikel
01. August 2025
Datenbewertung: Der Schlüssel zur digitalen Wertschöpfung
Erfahren Sie, wie systematische Data Valuation den ökonomischen Wert Ihrer Daten sichtbar macht. Dieses Whitepaper zeigt, wie Unternehmen durch gezielte Nutzung, Optimierung und Monetarisierung von Daten Effizienz steigern, neue Geschäftsmodelle erschließen und ihren Unternehmenswert erhöhen.
Artikel
01. August 2025
Arten von Datenwert für Unternehmen
Daten entfalten Wert auf vielfältige Weise – doch nur wer ihre Potenziale erkennt, kann sie gezielt nutzen. Dieses Whitepaper zeigt fünf zentrale Datenwert-Arten im Mittelstand und veranschaulicht anhand praxisnaher Beispiele, wie daraus wirtschaftlicher Mehrwert und Wettbewerbsvorteile entstehen.
Artikel
31. Juli 2025
Business Analytics: Schlüssel zum Wachstum
Mit Business Analytics datenbasiert wachsen! Erfahren Sie, wie Unternehmen mit intelligenten Analysen und KI-gestützten Tools fundierte Entscheidungen treffen. Optimieren Sie Prozesse, prognostizieren Sie Nachfrage und erkennen Sie Potenziale – datengetrieben, präzise & wirkungsvoll!
Artikel
31. Juli 2025
Datenreife messen – Grundlage für digitale Wertschöpfung
Entdecken Sie, wie ein strukturierter Data Readiness Check den Weg zu datengetriebener Wertschöpfung ebnet. Schaffen Sie die Grundlagen für digitale Geschäftsmodelle, Effizienzsteigerung und Datenmonetarisierung – fundiert, skalierbar und rechtssicher.
Artikel
29. Juli 2025
Wertschöpfung mit Unternehmensdaten
Unternehmensdaten gehören noch immer – trotz AI – zu den vielfach unterschätzten Vermögenswerten. Doch wie lässt sich aus internen Daten echte Wertschöpfung generieren? Datenmonetarisierung eröffnet neue Geschäftsmodelle – vom direkten Verkauf bis zur Service-Integration. Ob über digitale Marktplätze oder datenbasierte Zusatzangebote: Wer seine Informationen gezielt strukturiert, lizenziert oder teilt, erschließt skalierbare Einnahmequellen und sichert sich strategische Vorteile.
Artikel
29. Juli 2025
Kundendaten nutzen für individuelle Erlebnisse
Personalisierte Kundenerlebnisse sind kein Zukunftstrend mehr – sie sind Erwartung. Doch wie lassen sich aus verstreuten Kundendaten konkrete Maßnahmen ableiten? Mit intelligent verknüpften Systemen und der richtigen Datenstrategie verwandeln Unternehmen komplexe Informationen in gezielte Interaktionen. Plattformen wie Customer Data Platforms, moderne CRM-Systeme oder Marketing-Automation-Tools schaffen Transparenz, Geschwindigkeit und Relevanz – und machen Kundenverhalten in Echtzeit nutzbar.
Mehr Insights
Arrow

Bereit für die Zukunft?

Vereinbaren Sie jetzt ein unverbindliches Beratungsgespräch.

Jetz Kontaktieren
white arrow up iconwhite arrow up icon
Novemcore Logo
ovemcore
Adresse
Calvinstraße 21, 10557 Berlin
Kontakt
+49 (0) 176 4158 3622
contact@novemcore.com
ServiceFallstudienInsightsÜber unsKontakt
Impressum & Datenschutzerklärung
Cookie Einstellung